K Means_Clustering
#!/usr/bin/env python # coding: utf-8 # In[3]: import pandas as pd import numpy as np import matplotlib.pyplot as plt df = pd.read_csv( r "C: \U sers \91 887 \O neDrive\Desktop \M achine_Learning\week4_Mall_Customers.csv" ) x = df.iloc[:, [ 3 , 4 ]].values # In[4]: from sklearn.cluster import KMeans wcss_list = [] for i in range ( 1 , 11 ): kmeans = KMeans( n_clusters = i, init = 'k-means++' , random_state = 42 ) kmeans.fit(x) wcss_list.append(kmeans.inertia_) plt.plot( range ( 1 , 11 ), wcss_list) plt.title( 'The Elobw Method Graph' ) plt.xlabel( 'Number of clusters(k)' ) plt.ylabel( 'wcss_list' ) plt.show() # In[ ]: