Multinomial_Regression

 #!/usr/bin/env python

# coding: utf-8

# In[39]:


#import the necessary libraries
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score


# In[40]:


#load the digit datasets
digits=datasets.load_digits()


# In[41]:


#defining feature matrix x and response vecoor y
X=digits.data
y=digits.target
print(X)
print(y)


# In[48]:


#split the test train data
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=1)
print(y_test)


# In[49]:


#standradize features using standardscaler
scaler=StandardScaler()
scaler.fit(X_train)
X_train_scaled=scaler.transform(X_train)
X_test_scaled=scaler.transform(X_test)


# In[50]:


#create the logistic regression model
model=LogisticRegression()


# In[51]:


#train the model on scaled training data
model.fit(X_train_scaled,y_train)


# In[52]:


#make predidction on the sclaed testing data
y_pred=model.predict(X_test_scaled)
print(y_pred)


# In[53]:


#evaluate model performance
acc=accuracy_score(y_test,y_pred)
print("Logistic Regression model accuarcy (in %):",acc*100)


# In[ ]:





# In[ ]:





Comments

Popular posts from this blog

1.Import and Export(How to read csv file using manualvfunction)

K Means_Clustering

How to became a junior Engineer