AgglomarativeCliutering
#!/usr/bin/env python
# coding: utf-8
# In[11]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df=pd.read_csv(r"C:\Users\91887\OneDrive\Desktop\Machine_Learning\week4_Mall_Customers.csv")
x=df.iloc[:,[3,4]].values
# In[12]:
from sklearn.cluster import AgglomerativeClustering
hc= AgglomerativeClustering(n_clusters=5, affinity='euclidean', linkage='ward')
y_pred= hc.fit_predict(x)
# In[13]:
plt.scatter(x[y_pred == 0, 0], x[y_pred == 0, 1], s = 100, c = 'blue', label = 'Cluster 1')
plt.scatter(x[y_pred == 1, 0], x[y_pred == 1, 1], s = 100, c = 'green', label = 'Cluster 2')
plt.scatter(x[y_pred== 2, 0], x[y_pred == 2, 1], s = 100, c = 'red', label = 'Cluster 3')
plt.scatter(x[y_pred == 3, 0], x[y_pred == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(x[y_pred == 4, 0], x[y_pred == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.legend()
plt.show()
# In[ ]:
# In[ ]:
Comments
Post a Comment