Species sepal & petal etc
import pandas as pd
# Read the dataset
data = pd.read_csv("Iris.csv")
# Calculate the average measurements for each distinct species
avg_measurements = data.groupby("species").mean().reset_index()
# Create a new dataframe with species and average features
avg_features = avg_measurements[["species", "sepal_length", "sepal_width", "petal_length",
"petal_width"]]
# Rename the columns for better representation
avg_features.columns = ["Species", "Avg Sepal Length", "Avg Sepal Width", "Avg Petal
Length", "Avg Petal Width"]
# Print the new dataframe
print(avg_features)
Output
Species Avg Sepal Length Avg Sepal Width Avg Petal Length Avg Petal Width
0 setosa 5.006 3.428 1.462 0.246
1 versicolor 5.936 2.770 4.260 1.326
2 virginica 6.588 2.974 5.552 2.026
a. Which species is having the maximum sepal width?
max_sepal_width_species = avg_features.loc[avg_features["Avg Sepal Width"].idxmax(),
"Species"]
print("Species with maximum sepal width:", max_sepal_width_species)
Output
Species with maximum sepal width: setosa
b. What is the standard deviation of average petal length among all the species?
std_dev_petal_length = avg_features["Avg Petal Length"].std()
print("Standard deviation of average petal length:", std_dev_petal_length)
Output
Standard deviation of average petal length: 1.7540571093439357
c. Determine the species that have an average sepal length above 2.0.
species_above_2 = avg_features[avg_features["Avg Sepal Length"] > 2.0]["Species"]
print("Species with average sepal length above 2.0:", ", ".join(species_above_2))
Output
Species with average sepal length above 2.0: setosa, versicolor, virginica
Comments
Post a Comment